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S U M M A R Y  
A quasi two-dimensional fluid flow problem, a channel with a cavity, is solved by finite-difference techniques. The 
numerical method used gives convergent results for all Reynolds numbers studied. 

1. Introduction 

When a fully developed assumption is made in one of the directions of an orthogonal coordi- 
nate system, the three--dimensional Navier-Stokes equations become quasi two-dimensional 
in steady, incompressible viscous flow. The flow exists in all three directions but there is no 
variation in the fully developed direction. 

The numerical solution of the quasi two-dimensional Navier-Stokes equations is given 
below for the problem of flow in a channel with a rectangular cavity. This problem configura- 
tion is encountered, for example, in the parallel flat plate models of viscoseals [1]. The flow 
equations are solved by a finite-difference technique. 

2. Formulation of the problem 

Consider the parallel flat plate model of a viscoseal illustrated in Fig. 1. The flat plate with the 
grooves is taken as stationary while the smooth flat plate on top is moving with the velocity 
1 in the x'-direction. The y - z  cross section of the flow domain of one typical groove-ridge pair is 
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Figure 1. Plan view of mathematical model of parallel groove-ridge geometry. 
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Figure 2. Cross-sectional view along z-axis of one-groove-ridge pair. 
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shown in Fig. 2. When the assumption that the flow is fully developed in the x-direction is 
introduced, the Navier-Stokes equations take the form 

v 7yy + w az - gy + Re \ gy2 + ~ z  2} (1) 

gw gw gp • (a w 
V~y + W~zz= - g--z + R e k a y  2 + Oz 2// (2) 

Ov aw 
gy + ~ = 0 (3) 

V ~y + W gz - ax + Ree k gy2 + gz 2 /  (4) 

where @/gx = constant, u, v, w are the velocity components in the x, y, z-directions, p is the 
pressure, and Re is the Reynolds number. 

Now, a two-dimensional stream function, ~ (y, z), and vorticity function, ~ (y, z), are defined 
by 

g0 g0 (5a) w - v -  
Oy ' ~z ' 

and 
gw 0v ~= 
gy Oz " 

Introducing the new variables into equations (1) through (3) we have 

a~+~+Re ~zay ay~z =~ gy2 

where 

(5b) 

(6) 

020 a2~# (7) 
= ay--~- + -&2 - 

The quasi two-dimensional flow problem, therefore, is described by equations (4), (6), and (7). 
Equations (6) and (7) are referred to as the vortieity (transport) equation, and the stream func- 
tion equation, respectively. 
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Equations (6) and (7) can be solved for the y-z flow field in terms of the functions ~ and ~. 
The boundary conditions to be satisfied are (refer to Fig. 2) 

0 ~  _ sin c~, on  l iB;  (8) = Oe, 0y 

=0, #~ - 0, on CD, EF, GH ; (9) 
Oy 

t) = 0, ~z -- 0, on DE, FG, (10) 

where OQ is the guess value of the stream function on the smooth flat plate, and e is the angle 
between the x- and Z-directions. Since the flow fields are similar in different groove-land pairs 
the periodicity conditions exist on BC and AH, i.e., 

[y, - 1  sin ~/(2c)] = ~ I-y,/sin ~/(2c)] (11) 

[y, - l sin ~/(2c)] = ~ [y, I sin, ~/(2c)] (12) 

O"+m0 [y, -1  sin ~/(2c)] 

~y" ~z ~ 

c?"+m~ [y, --l sin c((2c)] 

0"+toOl-y,/sin ~/(2c)] 

Oy"~z ~ 

0"+"4 [y, 1 sin c~/(2c)] 
~? y" ~ z m O y" ~? z" 

fo r0<n ,m<oo .=  = 

(13) 

(14) 

The vorticity, ~, does not have explicit boundary values. The i-boundary values are corrected 
for initial guesses as the y-z flow field is being solved. 

Before attacking the x-momentum equation (4), it is necessary to calculate for the pressure 
gradient in the x-direction. For a cylindrical viscoseal geometry, Op/Ox is given by [1] 

01J = N(Apr+o)z (15) 
0x 2rEr cos 

where N is the number of helix starts, r is the rotor radius, and (Apr +g)~ is the pressure difference 
between the leading and trailing ends of a groove-ridge pair cross section (Fig. 2). After solving 
equations (6) and (7), the value of (APr+o)z can be found from the integrated form of the z- 
momentum equation, i.e., 

(AG+g)z = ~ q~-q~ + Ree 1 ~Y dz - v~dz (16) 
1 

where q2 = v 2 + w 2, and the point 1 corresponds to z = - l sin c((2c), and the point 2 to z = I sin 

Now, the x-momentum equation (4), after introducing the stream function gradients for the 
velocities v and w, and using the calculated value of @/Ox, can be solved for the velocity u. 
The u-velocity boundary conditions are 

u = cos e, on AB; (17) 

u = 0, on CD, DE, EF, FG, GH. (18) 

On BC and AII the periodicity conditions prevail, i.e., 

u I-y, - l sin ~/(2c)] = u [y, l sin c~/(2c)] (19) 

~"+mu[y, - l  sin c~/(2c)] _ 3"+"u[y, l sin c((2c)] 
- ( 2 0 )  ay" ~z" ~y" ~3z m 

After solving the x-momentum equation, the net volume flow rate, Qax, in the z'-direction is 
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checked to see if the condition Qax = 0 has been reached with the guessed value of@Q. The volume 
flow rate Qa, can be found from 

~l/c~h(x') i fl 
O~ = u(y, x') sin ~dydx' + - w(y, x') cos ~dy (21) 

~ 0  a 0  C 0 

where h(x') is the nondimensional distance from the smooth plate to the grooved plate as a 
function of x'. 

3. The numerical method 

The vorticity transport equation (6), the stream function equation (7), and x-momentum equa- 
tion (4) are solved by finite-difference techniques. In order to represent the equations by finite- 
difference forms, a nonuniform rectilinear mesh is superimposed over the y-z domain. Mesh 
sizes Ay's, and Az's are taken relatively small next to the boundaries for accuracy. 

First the coupled vorticity equation (6) and the stream function equation (7) are solved si- 
multaneously. At the interior and boundary grid points, a pair of finite sequences of discrete 
functions are constructed as follows: 

@(0) @(1), @(2) . . . .  , @(n-2), @(n) 

~o),  ~(1), 4(2) . . . .  , ~( . -1) ,  4(.) 

For given tolerance e0 and er 

1@(")-@("-2) I __<sO, I~(")-~("-1)1 __<5r 

at each grid point of the domain. 

(22) 

(23) 

(24) 

At each grid point on A B, @(o) is taken as @o ; a guess value which is iterated for Qax = 0. On 
CD, DE, EF, FG, and GH the value of @(o) is set to zero. The initial guess for the remaining 
discrete stream function values is determined by linear interpolation along the vertical grid 
lines of the polygon ABCDEFGH (see Fig. 2). At each grid point the value of 4 (~ is set to zero. 

The second element of sequence (22) is now determined as follows. On AB, for each grid point 
set @(1)=@o; at each grid point on CDEFGH set @~2)=0. To find @(2)of the remaining grid 
points, the stream function equation (7), and the periodicity conditions (11) and (13) are written 
for each point in a finite-difference form by using central differences. The resulting linear alge- 
braic system is then solved by successive overrelaxation and the solution is denoted b y  ~(1). 
The function @(1) is then defined by the weighed average 

@(2) = pq, @(~ + (1 - pq,) ~(2), 0__<p0< 1. (25) 

After completely defining @(2) at each grid point of ABCDEFGH, the second dement of 
sequence (23) is now determined. With the set of values of @(1), the boundary grid point values 
of the vorticity are corrected by a second order approximation. The stream function is expanded 
about two points next to the boundary under consideration in a Taylor series, and the appro- 
priate value of the velocity is substituted for the first derivatives of the stream function. The 
corrected values of ~(1) at the boundary grid points are weight averaged by # such that 

~(i) = #~(~ + (1-#)~(2), 0 < # <  1 (26) 

defining the new set of values 4 (2) for those points. 
To find 4 (2) for the interior points, the vorticity equation (6) is approximated by a finite- 

difference form as follows. The second derivatives of the vorticity, 4, and the first derivatives of 
the stream function, @, are replaced by "second order" central differences. The first order deri- 
vatives of the vorticity, 4, are approximated by backward or forward differences depending on 
whether the coefficients of these derivatives are positive or negative [2]. This method yields 
diagonally dominant systems of linear algebraic equations for all Reynolds numbers, Re. The 
generated algebraic equations are then solved by successive underrelaxation, and the solution 
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is denoted by ~(~-) of the interior grid points. The function ~(~) is then determined at the interior 
points by the weighted average 

~(a) = pr176 + (1 -  pr176 0=<pr (27) 

The numerical method is repeated for the other elements of sequences (22) and (23) until, for 
some n, (24) is valid. The final elements ~(") and 4(") will constitute the solution to the difference 
approximations of equations (6) and (7) for a guess value of ffQ. 

The pressure difference between BC and AH at y = constant is numerically found from equa- 
tion (16) by using Simpson's 1/3 and 3/8 rules. Then, Op/~x is calculated by means of equation 
(15). 

Now, the u-velocity equation (4) is put in a finite-difference form. The first order derivatives of 
u are expressed by backward or forward differences depending on whether the coefficients of 
these derivatives are positive or negative. The other derivatives are approximated by central 
differences. Then, the discrete u-velocity values on and within the polygon ABCDEFGH are 
found by successive overrelaxation. 

Knowing all the discrete velocity values for the y-z domain, the volume flow rate, Q,x, is 
calculated from equation (21) using Simpson's rules. The whole numerical procedure is repeated 
if the desired value of Q.x has not been reached with the guess value of ~e' 
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4. Examples 

The numerical procedure was tested with several geometries. The mesh distribution, relaxation 
and weighted averaging parameters depended on the geometry considered and the Reynolds 
number., Convergent results were obtained readily for ~,=10 -6, ~r 1 0  - 6 ,  p~=0.05, ~= 
0.05, and pc= 0.7 even for high Reynolds numbers on the Univac 1108 computer system. A 
variety of checks were made to determine the validity of the results. In a given special case the 
numerical method yielded essentially the same result as an analytical method. 

Numerical results for different geometries are shown in Figures 3 through 9. The presented 
curves were generated by simple linear interpolation for constant value of the variables. The 
streamline contours for the y-z flow field shown in Fig. 3,6, and 9 are in qualitative agreement 
with those of similar flow field problems analyzed by other authors [2.3, 4, 5]. The presented 
solutions for the flow problem corresponded to Qax = 0. 

5. Conclusions 

The numerical method presented here is straightforward, and convergent for all Reynolds hum- 
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bers studied. However,  as expected, the convergence rate depends  on the  geometry  of  the do- 
main  and also on the Reynolds  number.  The method  is general, and  can be applied to solve any 
quasi two-dimensional  problem. 
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